
843

Choice, Interoperability, and Conformance in Interaction
Protocols and Service Choreographies

Matteo Baldoni
Dipartimento di Informatica

Università degli Studi di Torino
C.so Svizzera, 185
I-10149 Torino, Italy

baldoni@di.unito.it

Cristina Baroglio
Dipartimento di Informatica

Università degli Studi di Torino
C.so Svizzera, 185
I-10149 Torino, Italy

baroglio@di.unito.it

Amit K. Chopra
Dept. of Computer Science
North Carolina State Univ.

Raleigh, NC 27695-8206, USA
akchopra.mail@gmail.com

Nirmit Desai
IBM India Research Labs

Embassy Golf Links, Block D
Bangalore 560071, India
nirmitv@gmail.com

Viviana Patti
Dipartimento di Informatica

Università degli Studi di Torino
C.so Svizzera, 185
I-10149 Torino, Italy
patti@di.unito.it

Munindar P. Singh
Dept. of Computer Science
North Carolina State Univ.

Raleigh, NC 27695-8206, USA
singh@ncsu.edu

ABSTRACT

Many real-world applications of multiagent systems require inde-
pendently designed (heterogeneous) and operated (autonomous) a-
gents to interoperate. We consider agents who offer business ser-
vices and collaborate in interesting business service engagements.
We formalize notions of interoperability and conformance, which
appropriately support agent heterogeneity and autonomy. With re-
spect to autonomy, our approach considers the choices that each
agent has, and how their choices are coordinated so that at any time
one agent leads and its counterpart follows, but with initiative flu-
idly shifting among the participants. With respect to heterogeneity,
we characterize the variations in the agents’ designs, and show how
an agent may conform to a specification or substitute for another
agent. Our approach addresses a challenging problem with multi-
party interactions that existing approaches cannot solve. Further,
we introduce a set of edit operations by which to modify an agent
design so as to ensure its conformance with others.

Categories and Subject Descriptors

I.2.11 [Distributed Artificial Intelligence]: Multiagent systems;
D.2.4 [Software/Program Verification]: Formal methods; H.3.5
[Online Information Services]: Web-based services

General Terms

Design, Verification, Theory

Keywords

Interaction Protocols, Interoperability, Conformance, Choreogra-
phies, Web Services

1. INTRODUCTION

Cite as: Choice, Interoperability, and Conformance in Interaction Proto-
cols and Service Choreographies , M. Baldoni, C. Baroglio, A. K. Chopra,
N. Desai, V. Patti, M. P. Singh, Proc. of 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Decker, Sichman,
Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp.
XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

The accomplishment of a complex task often requires interac-
tions among a set of parties. For instance, in a business process
scenario, a seller may need to interact with a payment service and
a shipper in order to support a purchase. These partners must coor-
dinate their executions and must be able to interact with each other.
There is broad agreement on the importance of describing such in-
teractions formally. The agents community refers to such a specifi-
cation as an interaction protocol, whereas the services community
refers to it as a choreography. In deference to the services literature
and because we do not study higher-level notions such as commit-
ments, we use the term choreography in this paper. A choreog-
raphy abstractly specifies an interaction in terms of its roles, the
messages exchanged among the roles, and constraints on the mes-
sage exchanges. An agent playing a role in a choreography would
send and receive some subset of the messages the role is specified
to send and receive.

Agents who offer business services and collaborate with each
other in business service engagements must be interoperable [5, 8,
13, 20, 27]. In open environments, such as the Web, where coali-
tions are formed dynamically, and the partners can be replaced or
upgraded at any moment, their interoperability is guaranteed by
adopting a choreography whose roles are by design interoperable.
Proving that the actors of the various roles conform to the corre-
sponding specification ensures their interoperability. When a busi-
ness partner (for instance, a shipping service) becomes unavailable,
we would need replace it with a new partner that we are confident
will support the interactions that the other partners had with the
original service. Similar considerations apply when one of the par-
ties (e.g., the payment service) is upgraded, maybe to allow a richer
interaction. This approach, which relies on the notion of confor-
mance [5, 6, 9, 10, 19, 24, 25], is highly practical: (1) it enables the
distribution of the interoperability test, and (2) it does not require
any knowledge about the other services involved in the interaction.
The only assumption is that all of them respect the agreed upon
choreography. Conformance guarantees substitutability: namely,
that substituting a role (or an old implementation) by a conformant
player preserves the interoperability of the service composition.

The social ability of agents to interact with others should, more-
over, be reconciled with the possibility of interpreting the chore-
ography according to own goals and further policies, rather than to
implement it strictly [22]. For instance, to realize a choreography,

Cite as: Choice, Interoperability, and Conformance in Interaction Proto-
cols and Service Choreographies, M. Baldoni, C. Baroglio, A. K. Cho-
pra, N. Desai, V. Patti, M. P. Singh, Proc. of 8th Int. Conf. on Autono-
mous Agents and Multiagent Systems (AAMAS 2009), Decker, Sichman,
Sierra and Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hungary,
pp. 843–850
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

844

a set of business services must be discovered or implemented that
play the various roles but no existing service may perfectly match
a given role. Further, a designer may need to customize a service
implementation, for instance, to take into account specific privacy
norms. Still the policy that is adopted must be acceptable. For this
reason, we aim at capturing the degree of freedom that is affordable
when modifying the specified behavior, so to remain conformant
and, then, interoperable w.r.t. the choreography. In particular, we
set up a framework in which any amount of design variation is pos-
sible as long as conformance is preserved. The key question is
how to transform a conformant implementation into another con-
formant implementation. We show that the proposed framework
supports a set of edit operations that allows such transformations.
Based on this, it will be possible to evaluate, before the interaction
takes place, to which extent a partner is free in deciding about its
behavior, having a means for practically producing modifications of
it. So edit operations can be used to produce upgrades of existing
parties as well as to correct in some cases their flows of interac-
tion, producing appropriate patches (or adaptors), so to make them
interoperable with interlocutors they could not interact with before.

A common characteristic of approaches to conformance is a dis-
tinction of the way incoming messages (receptions) and outgoing
messages (emissions) are handled: usually, the assumption is that
in every state of the interaction a service will either be a sender or
a receiver, and that the initiative about which message to exchange
is up to the sender. Let us consider, for example, a book-selling
service that offers operations such as search and buy to its cus-
tomers. When interacting with a customer, the service will await
the customer’s request and will not initiate a search or the selling
procedure. The book-selling service’s execution will depend on a
message sent by the customer. On the other hand, once the book-
selling service arrives at a state of execution when it must give some
information to its customer, for instance, that a book is not avail-
able or that it is possible to proceed with the order, the choice of
which message to send depends on the book-selling service, i.e., on
its internal computation.

The above yields a simple definition of conformance. Assuming
the seller interoperates with the customer, any service that enter-
tains all the incoming messages that the seller entertains and pro-
duces no more messages than the seller produces will also inter-
operate with the customer. That is, the new service is conformant
with the seller. Bordeaux et al. [8] codify this intuition as the motto
less emissions, more receptions! Approaches to conformance, such
as [8, 5, 6, 9, 10, 19, 24, 25], analyse the messages that are ex-
changed at every step and allow substituting an existing participant
with a new participant that may not exactly match the specification
but produces narrower sets of emissions and tackles broader sets of
receptions, without compromising interoperability.

However, making the assumption that the initiative of choosing
the action to perform necessarily lies with the sender and that, con-
versely, each party must be able to tackle all possible receptions, is
limitating and does not account for communication models where
interaction is performed, for instance, by publishing and reading
information. Consider, as an example, a surveillance system where
a Monitor interacts with a set of Sensors. Each Sensor makes a
continuously updated temporal series of data available to the Mon-
itor through a blackboard system. The Monitor, on the other hand,
decides which data to read at every step, depending on its internal
policies. In this case, the information producer, the Sensor, does
not choose which information to provide: it is up to the consumer
to decide, the Sensor must have the whole series ready at any time.
Even more general is the case where the Monitor can either decide
to read some data on the blackboard or to send a message to the

Sensor and ask it to change some parameter of its configuration.
This example shows that the receipient of information, in our

case the Monitor, can exercise control on what it receives. In gen-
eral, in cross-organizational business management [16] we need to
model interactions very flexibly: in particular, at any step an au-
tonomous participant can either decide to say something or to wait
for a message [13]. Accordingly, we treat making or accepting a
choice as orthogonal to sending and receiving a message. Thus, at
any decision point, a service may (as leader) make a choice to send
or to receive or (as follower) accept its partner’s choice to send or
to receive.

This paper makes the following contributions. First, it pro-
poses and formalizes notions of interoperability and conformance
that are centered on an explicit representation of decision points,
i.e., of those points of the interaction in which a party chooses, and
those in which it accepts its partner’s choices. Second, it estab-
lishes key theoretical results involving these definitions, especially
regarding the preservation of interoperability through the substitu-
tion of a conforming agent for another. Third, it expands this treat-
ment to accommodate multiparty interactions, which otherwise can
lead to deadlocks, and which previous approaches cannot handle.
Fourth, it defines a set of edit operations that allow the construction
of conformant variants by: (a) reducing or augmenting the alterna-
tives an agent has at some decision point, depending on whether
the agent has the lead on that specific choice or it has to follow the
partner’s decision; (b) splitting or merging decision points, once
again depending on whether it has the lead or not.

The rest of this paper is as follows. Section 2 expands on the intu-
ition behind our proposal. Section 3 develops the notions of inter-
operability and conformance suited for cross-organizational busi-
ness interactions. Section 4 presents a set of edit operations that can
be applied to the problems of service update and patch production.
Section 5 concludes with a discussion of the relevant literature.

2. PROTOCOLS, CHOICES, AUTONOMY
In any system made of interacting parties, decision points and

the rules by which one or more of the parties are entitled to take
the initiative play a crucial role. Specifically, agents are usually
considered autonomous. Yet, fully autonomous agents would have
difficulty interoperating. In fact, since they have the power to take
their own decisions independently from one another, they need to
negotiate at every step what to do next. So, if we consider two
agents offering the business services s1 and s2, where (say, at a
particular stage in their interaction) s1 can send messages m1, m2,
and m3, while s2 can receive m2, m3, and m4, they will have to
agree on exchanging either m2 or m3 in order to interoperate. Ne-
gotiation is a costly and time-consuming process. A simplification
is to assume that, at every step, one of the two services is explic-
itly entitled to decide and may autonomously choose how to act,
thus taking the initiative in the interaction, while the other must be
capable of tackling whatever decision the first service takes.

Deciding which action to perform is nontrivial for the agent that
holds the initiative because some choices can compromise the con-
tinuation of the interaction. Following the above example, suppose
that s1 has the initiative of choosing. Now, if s1 decides to send
m1, that will compromise s1’s interaction with s2. Similarly, the
interaction can be compromised if the choice is up to s2 (the re-
ceiver) and it decides to read m4. So s1 and s2 should agree that
only m2 and m3 can be successfully exchanged. More practically,
to this aim it is possible to use protocols. Interaction protocols
and choreographies encode how the initiative is distributed among
the parties and the messages that can be exchanged. Conformance
tests, e.g. those in [8, 5, 6, 9, 10, 19, 24, 25] allow substituting an

M. Baldoni, C. Baroglio, A. K. Chopra, N. Desai, V. Patti, M. P. Singh • Choice, Interoperability, and Conformance in Interaction Protocols and Service Choreographies

845

existing participant with a new participant that produces narrower
sets of emissions and tackles broader sets of receptions, without
compromising interoperability. However, in the Survaillance Sys-
tem example, the Monitor leads by exercising choice on which data
to read, and the Sensor follows by sending a corresponding mes-
sage. Notice that if the Monitor wishes to pick data that is not
supported by the Sensor, the interaction will fail.

The approach, that we propose, defines protocols so as the ini-
tiative is naturally shared among the parties, by making leads and
follows explicit and by describing parties in such a way to flexibly
hand over the initiative to one another.

To support such generality, we treat the initiative of choosing as
orthogonal to whether a service is sending or receiving a message.
Consequently, we base our definitions of interoperability and con-
formance on the notion of “initiative to choose” itself rather than
on the kind of action (sending or receiving) on which the choice
applies, and we adopt a new motto:

lead less, follow more!

As we show, the notions of “leading” (i.e. being entitled of making
a choice) and “following” (i.e. delegating the choice to a partner)
come in handy for computing the degree of freedom that is avail-
able in modifying an implementation.

The approach that we propose is abstract and sits well with dif-
ferent kinds of infrastructure; specifically, both with a message ex-
change infrastructure and with a blackboard infrastructure. In more
general terms, the traditional approaches are focused on the infras-
tructure level. For example, if sending a message amounts to a
master invoking a method on a slave, we can imagine that the re-
ceiver be ready to execute all methods that are included in its pub-
lic interface. Or even if we think of placing a request message on
messaging middleware, it still is the choice of the sender. Such
interactions could possibly be achieved by lower-level coordina-
tion messages in the infrastructure, but it is most valuable to focus
the study of interoperability and conformance on business commu-
nications rather than on implementation details of the underlying
infrastructure.

3. CONFORMANCE & INTEROPERABIL-

ITY
Let us introduce a simple representation of the behavior of the

interacting parties. In the spirit of interaction, our concern is with
messages sent and received, and the choices that underlie such mes-
sage exchanges. As in [27, 8], we suppose that the communication
model is synchronous. Messages have the general form m(s, r, l)
where m is the kind of message, s and r are the sender and the re-
ceiver, and l is the content. When the receiver, sender, and content
are clear from the context or are not relevant, we simply denote a
message by its kind m. As in CCS [23], we use the notation !m
to represent an outgoing message (a message that is uttered or an
emission) and ?m to represent an incoming message (a message that
is expected or a reception). Moreover, given that m denotes an in-
teractive action (either sending or receiving a message), m denotes
its complementary action.

Choreography roles and their players are represented in the same
way, as individual processes that exchange messages with others.
Whenever it is not necessary to distinguish roles from players, we
use the general term “parties” to identify the entities that are in-
volved in a definition or a result. Along the lines of [5, 7, 8, 11],
the semantics of a party behavior is given in terms of automata the-
ory, annotating when necessary each state with a label, to express
the kind of branching structure it represents, whether a lead, �, or a

Figure 1: The survaillance interaction protocol: left the Moni-

tor role, right the Sensor role.

follow, ⊕. So, for instance, a � state with two outgoing edges, that
are respectively labeled by m1 and m2, denotes the choice between
the two interactive actions m1 and m2. Notice that such actions can
either correspond to sending or receiving messages, and that mixed
cases are also allowed. Conversely, a ⊕ state with two outgoing
edges, labeled by m1 and m2 respectively, denotes the fact that the
service is ready to execute both actions and will follow the choice
of its partner. Also in this case there is no constraint on which
kind of message (send or receive) is to be used with this operator.
This generalization makes our proposal more abstract than others in
the literature, suiting not only message-exchange communication
infrastructures (typical of service-oriented applications) but also
blackboard-based communication infrastructures. Here, in fact, it
is typical to have agents that offer alternative items, and it is up to
the taker to select an option.

DEFINITION 1 (FINITE STATE AUTOMATON). A finite state
automaton is a tuple (S, s0, γ, Σ, T, F), where S is a finite set
of states, s0 ∈ S is a distinguished initial state, γ is function from
S to the set {�,⊕, ε}, Σ is the alphabet, T ⊆ (S × Σ × S) is a
set of transitions, F ∈ S is a set of final states.

For simplicity, we call the states labeled by �, ⊕ as �-states, ⊕-
states respectively. Σ contains a set of either receptions ?m or emis-
sions !m. Final states are those corresponding to the possible con-
clusions of the interaction. In a finite automaton, we can always
classify states in two categories: alive states, that lie on a path from
the initial state to a final state, and dead states, the other ones.

In this work we do not consider the translation process neces-
sary to turn a choreography into a set of FSAs; our focus is, in fact,
conformance and interoperability. It is possible to find in the litera-
ture some works that do this kind of translations for WS-CDL and
BPEL; an example can be found in [17].

As an example of FSA, let us consider the Monitor role of the
Survaillance protocol, represented as in Fig. 1: the Monitor takes
the initiative and iteratively reads data supplied by the Sensor (ei-
ther the most recent data or the one taken five or ten minutes ago).
Alternatively, it can also ask the Sensor to perform an action (ro-
tate). When this happens the Monitor waits for an acknowledge-
ment by its partner before restarting its readings. Notice that the
Sensor must continuously supply all the data its partner can read
among, e.g. by writing it on the blackboard.

3.1 Interoperability
Intuitively, a set of parties is interoperable when it is stuck-free,

i.e., whatever point of interaction may be reached, communication
will not be blocked, and each of the parties will reach one of its
final states [25, 5]. In other words, if we focus on a state of the exe-
cution of a set of parties, either each party has reached a final state
(and the system has as well), or we expect some communication to
occur between two parties. This communication will transition the
system to another state of its execution. In this context, we call a
transition of the system a successful communication, i.e., the send-

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

846

ing of a message !m, done by one of the involved parties, joint with
its reception ?m, performed by another party of the system.

DEFINITION 2 (TRANSITIONS). Let P1, P2, . . . , Pn be n par-
ties, we denote by transitions(〈P1.si1 , P2.si2 , . . . , Pn.sin〉) the set
{〈P1.si′1 , P2.si′2 , . . . , Pn.si′n〉 | ∃h, k, m, 1 ≤ h �= k ≤ n,
(Ph.sih , m, Ph.si′

h
) ∈ Ph.T and (Pk.sik , m, Pk.si′

k
) ∈ Pk.T ,

and ∀j �= h nor k, Pj .s
′
ij

= Pj .sij}.

A sequence of transitions makes a run; in turn, a run is a successful
communication when it takes all parties to go from their initial state
to one of their final states.

DEFINITION 3 (RUNS). Let P1, P2, . . . , Pn be n parties, a
sequence of transitions (〈P1.sk, P2.sk, . . . , Pn.sk〉, m1, (〈P1.sk+1,
P2.sk+1, . . . , Pn.sk+1〉), . . ., (〈P1.sk+l−1, P2.sk+l−1, . . .,
Pn.sk+l−1〉), ml, (〈P1.sk+l, P2.sk+l, . . ., Pn.sk+l〉), such that,
for all h, 1 ≤ h < m, 〈P1.sk+h, P2.sk+h, . . . , Pn.sk+h〉 belongs
to transitions(〈P1.sk+h−1, P2.sk+h−1, . . . , Pn.sk+h−1〉).

DEFINITION 4 (SUCCESSFUL COMMUNICATION). Let P1, P2,
. . . , Pn be n parties, a successful communication is a run σ that
starts from 〈P1.s0, P2.s0, . . . , Pn.s0〉 and ends with 〈P1.st, P2.st,
. . . , Pn.st〉, where P1.st, P2.st, . . . , Pn.st are final states.

What are the conditions that guarantee a successful communica-
tion? The simple intuition is that at every point of the conversation,
the party that leads the choice cannot pursue an alternative that can-
not be tackled by its interlocutor. Conversely, the party that follows
the choice must be able to handle all of the alternatives its inter-
locutor can choose. When this happens we say that the two parties
are in compatible states. Let s be a state of an automaton A, we de-
fine as message(s) as the set {m | ∃s′, (s, m, s′) ∈ A.T}. More
formally, compatibility is defined as follows.

DEFINITION 5 (COMPATIBILITY). Let P and P ′ be two par-
ties and let P.si ∈ P.S� and P ′.sj ∈ P ′.S⊕ be two states. We
say that P.si is compatible with P ′.sj if

message(P.si) ⊆ message(P ′.sj)

Interoperability verifies the compatibility of two parties by check-
ing it for every pair of states that can be reached by the defined
transitions.

DEFINITION 6 (INTEROPERABILITY). Let P1, P2, . . . , Pn be
n parties. P1, P2, . . . , Pn are interoperable iff there exists a n-ary
relation R such that:

1. P1.s0 R P2.s0 R . . . R Pn.s0;

2. if P1.si1 R P2.si2 R . . . R Pn.sin , then:

• there are h and k, 1 ≤ h �= k ≤ n, such that Ph.sih is
compatible with Pk.sik ;

• for all 〈P1.si′1 , P2.si′2 , . . . , Pn.si′n〉 in
transitions(〈P1.si1 , P2.si2 , . . . , Pn.sin〉),
we have that P1.si′1 R P2.si′2 R . . . R Pn.si′n ;

• P1.si′1 , P2.si′2 , . . . , Pn.si′n are alive.

This notion of interoperability applies a priori, i.e., it checks that
whatever interaction is started by the partners, they will be able
to carry it to an end, each arriving at one of its final states. In
particular, at every step there must be a party, whose current state is
an �-state, and another party, that is in a compatible ⊕-state. The
next proposition immediately follows from the above definition, by
reasoning by absurd.

Figure 2: The Survaillance protocol: a modified Sensor, which

also supplies data collected fifteen minutes ago.

PROPOSITION 3.1. Let P1, P2, . . . , Pn be n interoperable par-
ties. Let 〈P1.si1 , P2.si2 , . . . , Pn.sin〉 be a set of reachable states
after a certain run σ, then there is a run σ′ such that σσ′ is a suc-
cessful communication.

3.2 Conformance
Now that we have defined a notion of interoperability, we can

define a notion of conformance that preserves interoperability af-
ter substitution. Since any of the messages that the leader can se-
lect must be handled by the follower, reducing the set of choices
preserves interoperability. Conversely, for the same reason, it is
not possible to reduce the set of messages that the follower is ex-
pected to handle, although it is possible to augment this set. So, for
instance, a follower that can tackle the incoming messages ?yes,
?oui, and ?si will always use only the first two alternatives when
dealing with a chooser that can only say !yes and !oui. In terms
of web services, this amounts to having implementations that can
accomplish a set of operations and can deal with interlocutors who
always request a subset of such operations. Last but not the least, it
is not possible to augment the set of messages of the leader because
doing so can cause deadlocks. For example, a party that, in some
state, can choose among !yes, !oui, or !si cannot safely substitute
a party that can choose only between !yes and !oui. Specifically,
if the original leader was able to interact with another, capable of
tackling both ?yes and ?oui, the new chooser can start an interac-
tion by sending !si, which unfortunately cannot be tackled by the
follower. As another example, consider a variant, reported in Fig-
ure 2, of the Sensor role of the Survaillance protocol and how it
interacts with the Monitor role. Here the Sensor can additionally
supply to its partner data that were recorded fifteen minutes ago
(15min_ago). It is easy to see that such modifications do not com-
promise the interoperability with any service that is conformant to
the regular Monitor role, because the choice is up to the Monitor:
the Sensor can supply additional data but only if requested. For this
reason there will never be any dangling communication.

The definition of conformance strictly depends on the notion of
interoperability and, therefore, it must preserve the selected notion
of compatibility. To this end, we need to define a notion of state
alignment, which relates two states, one belonging to a party repre-
sentation, the other belonging to another party representation that
we would like to substitute for the former. Alignment, as well as
compatibility, are properties of states.

DEFINITION 7 (ALIGNMENT). Let P and P ′ be two parties.
We say that the state P ′.sj aligns with P.si if:

1. P.si ∈ P.S�, P ′.sj ∈ P ′.S�, then message(P.si) ⊇
message(P ′.sj) (i.e., lead less!);

2. P.si ∈ P.S⊕, P ′.sj ∈ P ′.S⊕, then message(P.si) ⊆
message(P ′.sj). Moreover, all messages have in common
the same leader 1 (i.e., follow more!).

1The need of having a same leader will be discussed in Section 3.3.

M. Baldoni, C. Baroglio, A. K. Chopra, N. Desai, V. Patti, M. P. Singh • Choice, Interoperability, and Conformance in Interaction Protocols and Service Choreographies

847

This notion derives directly from Definition 5. It is easy to prove
the following property:

PROPOSITION 3.2. Let P1 and P2 be two parties, such that the
state P1.si is compatible with P2.sj . Let P ′1 and P ′2 be two other
parties, such that P ′1.s

′
i aligns to P1.si and P ′2.s

′
j aligns to P2.sj .

Then, P ′1.s
′
i is compatible with P ′2.s

′
j .

We now give a formal definition of conformance. This notion
is inspired by (bi)-simulation, which supports the comparison of
processes with different branching structures. The present defini-
tion generalizes the proposal in [5] and is characterized by a dis-
tinguished way in which the messages of the leader and follower
are handled. Interoperability verifies the alignment of states for the
whole automaton. The capability of comparing parties with dif-
ferent branching structures adds flexibility and enables distinguish-
ing cases in which the advancement or postponement of decision
points compromises interoperability from cases in which it does
not compromise interoperability. The definition that we introduce
below naturally applies when interactions are ruled by choreogra-
phy, which specifies various roles. Thus a likely scenario is that
we find a role specification from a choreography and then locate
a service that would conform that role. In this perspective, P is a
role specification in a given choreography, while P ′ is a finite state
automaton representing a players. Nevertheless, this notion can be
used more generally because both P and P ′ can be player imple-
mentations. The consequences of this generalization will be clear
in Section 4.

DEFINITION 8 (CONFORMANCE). Let P and P ′ be two par-
ties. We say that P ′ conforms to P iff there is binary relation R
such that:

1. P.s0 R P ′.s0;

2. if P.si R P ′.sj , then:

• P ′.sj aligns to P.si;

• ∀P ′.sj+1 such that (P ′.sj , m, P ′.sj+1), there is P.si+1

such that (P.si, m, P.si+1) and P.si+1 R P ′.sj+1;

3. for all states P ′.sj that are final states for P ′, and for which
there is a state P.si, such that P.si R P ′.sj , P.si is final;

4. for all states P.si that are alive and for which there is a state
P ′.sj such that P.si R P ′.sj , P ′.sj is alive.

Intuitively, condition 2 captures the lead less, follow more intuition;
condition 3 guarantees that the refined party P ′ (e.g., a given im-
plementation) cannot have final states that are not foreseen by the
party P ; condition 4 ensures that executions of the refined party P ′

with a prefix that is foreseen by service P must progress toward a
final state. Notice that this notion of conformance allows cutting
out some executions but does not allow cutting them all away. In
fact, when reducing a set of possible messages it is not possible to
cut all of the alternatives.

Conformance and interoperability are related by the following
fundamental theorem that can be proved by absurd from Defini-
tion 8, Proposition 3.2, and Proposition 3.1.

THEOREM 3.1 (SUBSTITUTABILITY). Let P1, P2, . . . , Pn be
a set of interoperable parties and let P ′1, P ′2, . . . , P ′n another set of
parties such that P ′i conforms to Pi, i = 1, . . . , n. Then P ′1, P ′2,
. . . , P ′n are interoperable.

Figure 3: Substituting s1 by s′1 causes a race condition, while

substituting it with s′′1 does not; the arc in s′′1 expresses the fact

that both alternatives are expected from s2.

3.3 One Lead for One Follow
Multiparty interactions complicate the situation for choice fol-

lowers. Fig. 3 illustrates an example involving three parties [25].
Here, s1 first follows s2 to receive message m1, and then follows
s3 to receive m2. The system {s1, s2, s3} is interoperable. Let s′1
be a party (Fig. 3) that is like s1 but can handle more requests than
s1. For brevity, let s′2 and s′3 be identical to s2 and s3 except that
they communicate with s′1. The system {s′1, s′2, s′3} is not interop-
erable, because the message m2(s3, s

′
1) might be consumed before

it would have been in the original system and this could produce a
deadlock. Our approach yields a natural solution. The above prob-
lem arises because we have a race condition between partners s2

and s3. This race condition can compromise the interaction. In
other words, s′1 will follow any of two potential leaders, s2 and
s3. The specification includes no interaction to allow these parties
to reach an agreement on who is entitled to take the lead. In fact,
each of s2 and s3 has no option but to send its message, leaving the
choice to s′1, but s′1 as the follower cannot choose. By interpret-
ing this example in our framework, it is clear that the problem (this
contradiciton) is due to an underspecification of who will be the
leader, thus causing a race condition. Consequently, we determine
an interaction such as the one expressed by s′1 to be invalid.

In order to avoid race conditions, the definition of alignment of
states, which is the basic building block of our notion of confor-
mance, includes a simple test for follow states: the test enforces the
fact that all the possible alternatives depend on the same leader. So
going back to the above example, we find that s′1 is not conformant
to s1. Further, we find a party (s′′1 in Fig. 3) to be conformant to s1,
because in its initial state, s′′1 explicitly specifies that it follows s2,
and thus remains perfectly interoperable with s2 and s3. Rajamani
and Rehof [25] cannot satisfactorily address this problem. They
simply require that the number of receptions not be expanded, so
they would find s′′1 to be nonconformant with s1.

The restriction to a single leader per follow state may seem a

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

848

Figure 4: UML sequence diagram for s′1, s2, and s3 (on the top:

circles underline the race condition between s2 and s3, both of

them may send a message at the same time) and for s′′1 , s2, and

s3 (on the bottom: there is no race condition).

little strong, however, if we consider the corresponding UML se-
quence diagram (see Fig. 4, top) the alternative lies along the life-
line of s′1; it is not possible to define the alternative in other ways
because the other two parties have separate lifelines and have no
option. So, according to the UML definition of alternative, [1, p.
454], the only party to have a choice of behavior is s′1 (the choice
between receiving a message from s2 or receiving one from s3).
The only way for s′1 to delegate the choice is that the alternatives
lie on the same lifeline of one of its interlocutors, i.e. that the leader
is unique (Fig. 4, bottom).

4. COMPATIBLE UPDATES AND PATCHES
This section introduces a set of derivation rules for producing

conformant refinements that preserve interoperability. We intro-
duce a set of edit operations denoted by the symbol ⇒; by S ⇒∗

S′ we represent the fact that by applying a sequence of edit op-
erations to the party S, we obtain the party S′. The name “edit
operations” is taken from the literature on versioning systems and
automatic document change detection. In a choreography, S will
be a role specification and the rules will produce conformant im-
plementations of S. Indeed, scripts made of these rules capture the
differences between a party and a variant of it.

DEFINITION 9 (DERIVABILITY RELATION). The derivability
relation ⇒∗ between two parties is defined as the transitive, reflex-
ive, and contextual closure of the relation ⇒, defined by the unidi-
rectional transformations in Fig. 5.

The Follow More rule captures the possibility of expanding choices
where a party would follow another. We suppose that the choices
that are added correspond to messages that do not already appear as
choices in the party on the left-hand side, otherwise conformance
could be compromised. The Lead Less rule captures the possibility
of reducing choices where a party leads. The other rules correspond
to changing the branching structure of a party. When merging fol-
low choices the expected interlocutor for all the merged states must
be the same. The above edit operations are a means to enable the
derivation of a conformant implementation either from a role spec-
ification or from a player that is known to be conformant to such a
specification. In both cases, the transformations guarantee the new
party’s interoperability (Theorem 4.1). Thus, any of the derivable

Figure 5: Edit operations.

variants can be chosen safely.

THEOREM 4.1. Let S and S′ be two parties. If S′ is derivable
from S, i.e., S ⇒∗ S′, then S′ conforms to S.

The derivation relation, in essence, specifies a designer’s free-
dom in specializing the party behavior, while keeping it safely ad-
herent to the reference specification.

DEFINITION 10 (SPACE OF CANDIDATES). Let S be a role
specification. Then, the set of players that are conformant to S,
written as candidates(S), is given by:

candidates(S) = {I | I is a player ∧ (S ⇒∗ I)}
In some application contexts, however, the appropriate role speci-
fication may be only indirectly available. For instance, a specifica-
tion may not be disclosed for business reasons. In such a case, the
possible variants of the specification S (i.e., candidates(S)) would
not be known. However, an existing interoperable party would still
be available. The above results enable us to use an existing party as
a reference implementation with respect to which we can produce
possible variants. This is useful in a party update scenario, where
a party is substituted by a new version and we want the upgraded
one to be usable by clients designed for the old version. Therefore,
a player S can be substituted by a player S′ (obtained by applying
an edit path), being sure that backward compatibility is guaranteed.
The transformation rules drive the upgrade process, by defining the
lawful changes. In this case, the previous definition can be turned
into the following:

DEFINITION 11 (CONFORMANT PARTY UPDATES). Let I be
a party. Then update(I) is defined as candidates(I).

Conformance need not be checked again. It is easy to prove that if
a service s0 conforms to a specification s1 which, in turn, is inter-
operable with a role s2, then s0 will be interoperable with any con-
formant implementation s3 of s2. Since s′0 belongs to update(s0),

M. Baldoni, C. Baroglio, A. K. Chopra, N. Desai, V. Patti, M. P. Singh • Choice, Interoperability, and Conformance in Interaction Protocols and Service Choreographies

849

s′0 conforms to s0 and, therefore, also to s1; thus, it is interoperable
with s2 and with all its implementations s3.

The foregoing addresses the problem of safely modifying a con-
formant and interoperable player. Another interesting application
is to modify a party that is known to be noninteroperable with a
new partner so to make it interoperable by automatically building
an appropriate patch, while preserving its interoperability with its
previous partners [27]. Let us consider a party that is (and we wish
to keep) interoperable with a set of partners, but is noninteropera-
ble with a new partner. Let us also suppose to have no information
about the new partner’s interactive behavior. For this reason, in-
teroperablity cannot be checked a priori but is possibly discovered
during the interaction. In this case, the only information source that
is available is the set of locally observable errors (for instance, the
player is aware of messages that it receives unexpectedly). Interest-
ingly, by exploiting the feedbacks and by using the edit operations,
it is possible to mend the player, that we own, thus making it inter-
operable with another one, whose interactive behavior is actually
unknown. For example, it may respond by sending back a message
indicating the incoming message was not expected.

In other circumstances, the player may lack such feedback (for
instance, it may observe that the communication with the partner is
delayed –possibly interrupted– but it does not have any means for
understanding the reason). When no feedback is available, there is
no hint on how to fix the interaction and, therefore, one can only
guess the modifications to try. In any case, the proposed edit op-
erations preserve interoperability with all those partners the player
being modified was interoperable. In other words, a player that is
modified so to be able to deal with a new client will still be able to
interact with all its old clients without any need of rechecking their
interoperability.

In general, given a party we can produce various modifications.
We define a measure of the distance between a party and one of its
modifications, based on the number of edit operations to apply.

DEFINITION 12 (DISTANCE OF A PARTY VARIANT). Let I be
a party and let I ′ be another party such that I ⇒∗ I ′. The distance
between I and I ′ is defined as d(I, I ′) = μn.I ⇒n I ′. We will
call the shortest sequence ψ of edit operations that transforms I in
I ′ the shortest edit path from I to I ′.

In this way it is possible to define patches as the modifications re-
quiring the least number of changes.

DEFINITION 13 (PATCH). Given a party I and a party T ,
such that I is not interoperable with T , a patch is the shortest edit
path ψ that produces a service I ′ ∈ update(I) that is interoperable
with T .

Notice that once a patch is found that makes I interoperable with T ,
it is possible to further modify the upgraded party without affecting
its interoperability with T .

5. CONCLUSION AND RELATED WORKS
This paper studies the possibility of verifying conformance and

interoperability based on an explicit representation of decision points.
In contrast with existing approaches, e.g., [25, 18, 5, 10], here, the
interactive parties in a system can also lead choices about which
message to receive and follow choices of which messages to send.
Such situations arise, for instance, in blackboard systems where a
partner offers a set of alternatives to its interlocutor, which chooses
to accept one of them. The framework that we have proposed deals
naturally with the multiparty case, while respecting our motto: lead
less, follow more! Another advantage of the proposed approach is

that it can support higher-level collaborative actions. For example,
we can think of business interactions that map to message patterns
involving more than one message. In such a pattern, more than one
party may be a sender, but it might still be possible to distinguish
who has the initiative in the pattern.

This paper explores the possibility of using the above notions
not only for verification but also as a tool for automatically pro-
ducing implementation replacements. The ability of producing up-
grades that preserve backward compatibility is crucial, especially
in contexts like internet-scale software engineering, where specifi-
cations are not always completely disclosed. The production of up-
grades and of patches, aimed at gaining interoperability, is achieved
through the definition of a set of transformations rules for calculat-
ing conformant variants. Such variants can be seen as conformant
refinements w.r.t. the reference specification, where the notion of
refinement is captured by the conformance relation. This distin-
guishes our work from refinement within the same agent, e.g., [4],
where, in a BDI framework, subsequent levels of abstraction of a
same agent are checked in order to verify that a set of target prop-
erties are preserved all along the design process. Other works, e.g.,
[21], consider a different kind of compliance, i.e., compliance w.r.t.
Service Level Agreements. Their aim is to verify that those com-
mitments on which the partners agreed, can actually be respected.
In both cases the verifications that are performed can be considered
as orthogonal to the ones proposed in our work.

The notions of conformance and interoperability have been stud-
ied by many researchers in the area of computer aided verifica-
tion and software engineering. Particularly relevant is the work
by Bordeaux et al. [8], which is set in a web service framework
and assumes a synchronous two-party communication model. Web
services are modeled as labeled transition systems (LTS) but Bor-
deaux et al.’s language does not distinguish between leading and
following choices, and does not support nondeterministic choices.
For this reason, their notion of conformance does not support rea-
soning about the advancement or postponement of decision points,
as is supported by our Definition 9 (of derivability). Bordeaux et
al. state that the extension of their approach to the nondeterministic
case can easily be obtained by making nondeterministic automata
deterministic by applying the classical transformation mechanisms
proposed by automata theory. Unfortunately, as shown in [5], in
general it is not possible to apply semantic equivalence between
nondeterministic and deterministic automata: the differences in their
behavior affect interoperability.

The elimination of nondeterminism by automata transformation
can be used in a context where conformance is computed based
on a trace semantics (or language containment), as in traditional
approaches [26, 24, 2, 19]. The limitation of this approach is that it
does not consider branching structures.

Bravetti and Zavattaro [9, 10] adopt an approach based on pro-
cess algebra. Here, conformance is used as a tool for comparing
service contracts [12], proposing a notion of contract refinement.
Although Bravetti and Zavattaro do not distinguish between lead-
ing and following choices, this notion is close to our notion of con-
formance, in particular in the two-party case. The difference is that
we base our definition on a variant of alternating simulation while
they use testing (a trace semantics). In the multi-party case, it is
necessary to make a distinction. Works like [10] are based on the
assumption of dealing with web services, which, as in WSDL, sim-
ply exhibit a set of operations and must be ready to execute any of
them whenever it is requested. For this reason, in [10] the addition
of further receptions can be done only on channels (messages in
our case) that are not present in the contract which is being refined.
Our parties, instead, stick to a choreography, i.e., at every instant of

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

850

the interaction they are allowed to tackle only a subset of the mes-
sages that they are able to receive or send. The choreography also
specifies who is the sender and who the receiver of each communi-
cation. Also in our case it would be possible to make a restriction
analogous to [10] but the explicit specification of the leader and of
the follower allows us to exploit a different kind of information,
that, in the case of web services, can be found in the languages for
representing choreographies.

In the context of computer aided verification, particularly rele-
vant are the works by Rajamani and colleagues [25, 18] and de Al-
faro and Henzinger et al. [3, 14]. The problem that we address
here can be set in de Alfaro and Henzinger’s [14] classification
as the problem of compositional refinement of an implementation
to a specification. Alur et al. [3] were first to use a simulation
that deals with emissions and receptions asymmetrically. Fournet
et al.’s approach [18] has inspired to distinguish between leading
and following choices. The definition of conformance of Rajamani
et al. preserves substitutability w.r.t. interoperability, interpreted
as stuck-freeness. But their framework tackles the multiparty case
only with an additional restriction that it is not possible to have
more receptions than what foreseen by the specification, which we
argued above is unrealistic. Rajamani et al. address the problem of
verification but do not propose a derivation framework for produc-
ing conformant variants.

For what concerns future work, besides further exploring the re-
search issues raised by the production of conformant upgrades and
patches, we also mean to further extend the management of multi-
party interactions by taking into account other information, such as
causality and time, along the lines of [15]. Another interesting and
open research issue is to study how to define a conformance rela-
tion that allows to capture the greatest set of conformant services,
along the line of [10].

6. REFERENCES

[1] Unified Modeling Language: Superstructure, version 2.0,
2004.

[2] M. Alberti, D. Daolio, P. Torroni, M. Gavanelli, E. Lamma,
and P. Mello. Specification and verification of agent
interaction protocols in a logic-based system. In ACM SAC
2004, pages 72–78. ACM, 2004.

[3] R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi.
Alternating refinement relations. In CONCUR, volume 1466
of LNCS, pages 163–178. Springer, 1998.

[4] L. Astefanoaei and F. S. de Boer. Model-checking agent
refinement. In Proc. of AAMAS ’08, pages 705–712, 2008.

[5] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. A priori
conformance verification for guaranteeing interoperability in
open environments. In Proc. of ICSOC 2006, LNCS 4294,
pages 339–351. Springer, 2006.

[6] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and
C. Schifanella. Verifying protocol conformance for
logic-based communicating agents. In Proc. of CLIMA V,
number 3487 in LNCS, pages 192–212. Springer, 2005.

[7] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and
M. Mecella. Automatic composition of e-services that export
their behavior. In Proc. of Int. Conf. on Service-Oriented
Computing, ICSOC’03, LNCS, pages 43–58. Springer, 2003.

[8] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When
are two web services compatible? In TES 2004, volume 3324
of LNCS, pages 15–28. Springer, 2005.

[9] M. Bravetti and G. Zavattaro. Contract based multi-party
service composition. In FSEN, volume 4767 of LNCS, pages

207–222. Springer, 2007.
[10] M. Bravetti and G. Zavattaro. A theory for strong service

compliance. In COORDINATION, volume 4467 of LNCS,
pages 96–112. Springer, 2007.

[11] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation
specification: a new approach to the design and analysis of
e-service composition. In Proc. of WWW’03 Conference,
pages 403–410. ACM Press, 2003.

[12] S. Carpineti, G. Castagna, C. Laneve, and L. Padovani. A
formal account of contracts for web services. In WS-FM,
volume 4184 of LNCS, pages 148–162. Springer, 2006.

[13] A. K. Chopra and M. P. Singh. Interoperation in protocol
enactment. In Declarative Agent Languages and
Technologies V, volume 4897 of LNCS, pages 36–49, 2008.

[14] L. de Alfaro and T. A. Henzinger. Interface theories for
component-based design. In EMSOFT, pages 148–165, 2001.

[15] N. Desai. Interorganizational Business Interactions:
Contracts, Processes, Evolution. PhD thesis, Dep.t of Comp.
Sci., North Carolina State Univ., November 2007.

[16] N. Desai, A. U. Mallya, A. K. Chopra, and M. P. Singh.
Interaction protocols as design abstractions for business
processes. IEEE Transactions on Software Engineering,
31(12):1015–1027, December 2005.

[17] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based
analysis of obligations in web service choreography. In Proc.
of IEEE International Conference on Internet&Web
Applications and Services, 2006.

[18] C. Fournet, C. A. R. Hoare, S. K. Rajamani, and J. Rehof.
Stuck-free conformance. In CAV, volume 3114 of LNCS,
pages 242–254. Springer, 2004.

[19] L. Giordano and A. Martelli. Verifying Agent Conformance
with Protocols Specified in a Temporal Action Logic. In
Proc. of AI*IA 2007, volume 4733 of LNAI, pages 145–156.
Springer, September 2007.

[20] N. Guermouche, O. Perrin, and C. Ringeissen. Timed
Specification For Web Services Compatibility Analysis. In
Proc. of Int. Workshop on Automated Specification and
Verification of Web Systems, WWV’07, 2007.

[21] A. Lomuscio, H. Qu, and M. Solanki. Towards verifying
compliance in agent-based web service compositions. In
Proc. of AAMAS ’08s, pages 265–272, 2008.

[22] T. Miller and P. McBurney. Annotation and matching of
first-class agent interaction protocols. In Proc. of AAMAS
’08, pages 705–712, 2008.

[23] R. Milner. A calculus of communicating systems. Lect. Notes
Comp. Science, 92, 1980.

[24] F. Plasil and S. Visnovsky. Behavior protocols for software
components. IEEE Trans. Software Eng., 28(11):1056–1076,
2002.

[25] S. K. Rajamani and J. Rehof. Conformance checking for
models of asynchronous message passing software. In CAV,
volume 2404 of LNCS, pages 166–179. Springer, 2002.

[26] M. Y. Vardi and P. Wolper. An automata-theoretic approach
to automatic program verification (preliminary report). In
Proc. of LICS, Symposium on Logic in Computer Science,
pages 332–344. IEEE Computer Society, 1986.

[27] D. M. Yellin and R. E. Strom. Protocol specifications and
component adaptors. ACM Trans. Program. Lang. Syst.,
19(2):292–333, 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

